| | 2017 COMBINED REVIEW MEETING POSTER PRESENTATIONS | | | | | | | |-------------------------|---|---|---|---------------------|--|--|--| | Technology
Area | Poster
Number | Organization | Poster Title | Presenter | | | | | Computational Materials | 1 | Florida International
University | The Fundamental Creep Behavior Model of GR.91 Alloy
by Integrated Computational Materials Engineering
(ICME) Approach | Yu Zhong | | | | | | 2 | Michigan
Technological
University | Development of a Physically-Based Creep Model
Incorporating ETA Phase Evolution for Nickel-Base
Superalloys | Walter Milligan | | | | | | 3 | QuesTek Innovations
LLC | Improved Models of Long Term Creep Behavior of High
Performance Structural Alloys for Existing and Advanced
Technologies Fossil Energy Power Plants | Jiaodong Gong | | | | | | 4 | University of Texas at
El Paso | A Guideline for the Assessment of Uniaxial Creep and Creep-Fatigue Data and Models | Jack Chessa | | | | | | 5 | Ohio State University | ICME for Creep of NI-Base Superalloys in Advanced Ultra-Supercritical Steam Turbines | Stephen
Niezgoda | | | | | Sensors & Controls | 6 | Virginia Polytechnic
Institute and State
University | Investigation of High Temperature Silica Based Fiber
Optic Materials | Gary Pickrell | | | | | | 7 | Washington State
University | Raman Spectroscopy for the On-Line Analysis of Oxidation States of Oxygen Carrier Particles | Hergen Eilers | | | | | | 8 | University of
Pittsburgh | Engineering Metal Oxide Nanomaterials for Fiber Optical Sensor Platforms | Peng Chen | | | | | | 9 | University of Texas at
El Paso | Additive Manufacturing of Energy Harvesting Material
System for Active Wireless Microelectromechanical
Systems (MEMS) Sensors | Ryan Wicker | | | | | | 10 | NETL - Research and
Innovation Center | Zirconia-Doped Ceria as Thin Film Gas Sensing Layer for High-Temperature Fossil Energy Applications | Robert Fryer | | | | | Water Management
R&D | 11 | NETL - Research and
Innovation Center | R&IC-SEA Water Management Research | Erik Shuster | | | | | | 12 | University of Alabama at Birmingham | Continuous Water Quality Sensing for Flue Gas Desulfurization Wastewater | Lee Moradi | | | | | | 13 | West Virginia State
University | Dev. Cost-Effective Biological Removal Technology for Selenium & Nitrate from Flue Gas Desulfurization Wastewater from Existing Power Generating Facility | Sanjaya | | | | | Technology
Area | Poster
Number | Organization | Poster Title | Presenter | |----------------------|------------------|---|---|-----------------------| | Gasification Systems | 14 | University of South
Carolina | Intermediate Temperature Nano-Structured Ceramic
Hollow Fiber Membranes for Oxygen Separation | Chris Xue | | | 15 | Virginia Polytechnic
Institute and State
University | Advancing Coal Catalytic Gasification to Promote Optimum Syngas Production | Francine
Battaglia | | | 16 | Gas Technology
Institute | Production of High-Purity Oxygen via Membrane
Contactor with Oxygen Carrier Solutions | Shinguang Li | | | 17 | University of Wyoming | Catalytic PRB Coal-CO ₂ Gasification for Fuels and Chemicals with Two Different Types of Syngas and Negative or Low CO ₂ Emissions | Maohong Fan | | | 18 | Montana State
University | Increasing the Rate and Extent of Microbial Coal to
Methane Conversion through Optimization of Microbial
Activity, Thermodynamics, and Reactive Transport | Matthew Fields | | | 19 | University of Utah | Ceramic Proppant Design for In-Situ Microbially
Enhanced Methane Recovery | Taylor Sparks | | | 20 | Southern Illinois
University | Optimized Microbial Conversion of Bituminous Coal to
Methane for In-Situ and Ex-Situ Applications | Yanna Liang | | | 21 | Montana State
University | Optimization, Scaleup, and Design of Coal-Dependent
Methanogenesis in Preparation for In-Situ Field
Demonstration | Matthew Fields | | | 22 | Pennsylvania State
University | A Scaling Study Of Microbially-Enhanced Methane
Production From Coal: Optimizing Nutrient Delivery For
Maximized Methane Production | Derek Elsworth | | | 23 | Alstom Power, Inc. | Alstom's Limestone Chemical Looping Gasification Process for High-Hydrogen Syngas Generation? | Frederic Vitse |